ITP2.1の影響と対策方法、JavaScript生成cookie7日問題

iOS12.2以降で搭載されるSafari12.1からITP2.1が導入される。 「Googleアナリティクスのcookieが使えなくなるのではないか」などの漠然とした不安が先行しているようなので、その要点と影響範囲、対策方法をまとめた。 ITP2.1とは 対象の環境 ブラウザSafari12.1以降 このSafariを搭載する対象OSはiOS 12.2/mac os 10.13以降 これまでのITP(2.0以前)からの更新内容 トラッカー認定されたcookiesがすぐ無効化される トラッカー認定されたcookieは以前は通常利用できない別にところに置いておかれた(partitioned co…

続きを読む →

Googleアナリティクスの計測ログをBigQueryに送る(無料版対応)

Googleアナリティクスで収集しているデータ(メジャメントプロトコル)をBigQueryに送り、集計・可視化できるようにする。無料版のGAにも対応し、しかもサーバレスでシンプルに実装できる。 本来BigQueryを使ったウェブ行動の詳細分析はGA360を使うべきなのだが、限りなく低コストでこんなことができるという参考程度で紹介する。 通常無料版のGoogleアナリティクスではできないログベースの行動分析をするのに使ったり、有料版であったとしてもGAはどのようなトラフィックを除外して集計しているのか、Googlebotなどのクローラがどんな動きをしているのかなどを検証するのに使うといいかもしれ…

続きを読む →

Rのdata.tableパッケージの使える関数一覧

Rのdata.tableはデータフレームを高速に扱えるように改良した形式だが、この機能を提供するdata.tableパッケージには添え字を使ったdata.tableの処理機能だけでなく、さまざまな関数が実装されている。 中にはdata.table以外の形式にも使える関数もあり、 dt[,col1:=関数()] の形式で使えるdata.table用の関数にも一般的に知られていない便利なものが数多くある。 特に高速化を意識しているものが多く、知っていると処理時間を短縮できる。 data.tableはdplyrとセットで使われることも多いが、dplyr自体はdata.tableの高速仕様にのっとった…

続きを読む →

Rのおすすめパッケージ2019年版

Rのおすすめパッケージをアップデートしてまとめた。定番の分析手法をはじめ、可視化やデータ処理に便利なものなど、幅広く紹介した。中にはマストというものもあるし、意外と知られていないがインストールしておくと便利なものまで、使い方の例も挙げて説明している。 ミドルウェア的なレイヤーのライブラリ(must) curl ファイルをwebからダウンロードするときに使う。 データファイルやパッケージのダウンロードが発生する処理で内部的に使われるライブラリで、他のパッケージのインストールの際に同時にインストールされることが多く、意識されることは少ないパッケージ。たまに依存関係の問題でも解決されずに未インストー…

続きを読む →

Rを使ったXGBoostの高度なパラメータチューニングと細かいノウハウ

XGBoostは機械学習手法として 比較的簡単に扱える 目的変数や損失関数の自由度が高い(欠損値を扱える) 高精度の予測をできることが多い ドキュメントが豊富(日本語の記事も多い) ということで大変便利。 ただチューニングとアウトプットの解釈については解説が少ないので、このあたりについて説明する。 XGBoostとは? 勾配ブースティングのとある実装ライブラリ(C++で書かれた)。イメージ的にはランダムフォレストを賢くした(誤答への学習を重視する)アルゴリズム。RとPythonでライブラリがあるが、ここではRライブラリとしてのXGBoostについて説明する。 XGBoostのアルゴリズム自体の…

続きを読む →

Rで時系列分析の簡単なまとめ

時系列のアプローチ 単系列 ざっと見る 定常性の確認 ARIMA/SARIMAモデルをあてはめる 複数系列の関係→VAR(ベクトル自己回帰)モデル その他の変数がある(時系列+回帰)→状態空間モデル (単なるラグ変数回帰→目的変数自体の時系列性が反映されない) ライブラリ{forecast}を使う 以下、データはy.tsとする 時系列のデータ形式 時系列データにはいくつかの形式がある。 ts: Rの基本の時系列オブジェクト。ほとんどの時系列ライブラリはこの形式の時系列データを扱う xts: データフレームとtsの間に位置づけられる、時系列データを便利に扱えるようにした形式 zoo: データフレ…

続きを読む →

Googleアナリティクスなどのツールにとらわれないウェブ解析の基本的な考え方

ツールを問わずやりたいのはアクセス解析 Googleアナリティクスは無料でアクセス解析、ウェブ解析ができるツールで、手軽に使えるような環境からよく「Googleアナリティクスの使いかたを学びたい」という声が出てくる。 有料なので使う人はあまり多くはないが、アクセス解析ツールといえばAdobe Analyticsも同じ仲間であり、やることは同じである。 重要なのは「Googleアナリティクス」という固有のツールの使い方を知ることではなく、アクセス解析/ウェブ解析の目的とプロセスを学ぶことである。ツールの違いは方言みたいなもので、使うときに知識として学べばいい。そうしておけばGA、AAだけでなく、…

続きを読む →

アドホックなウェブ解析が簡単に―GoogleアナリティクスとGoogle Data Studioの探索機能

ついにGoogleアナリティクスの無料版で、マウスのドラッグ&ドロップでディメンションや指標を選択し、自由にレポートを作れるようになった。 アドホックなウェブ解析の変遷 ある程度まともにウェブ解析をやっている方であればGoogleアナリティクスやAdobe Analyticsの画面の定型的なレポート、あらかじめ定義されたレポートを見るだけでなく、知りたい指標についてその都度(アドホック)に 対象データを絞り込む(スライス) 切り口を変えて見る(ダイス) 細分化して見る(ドリルダウン) 切り口を掛け合わせて見る 新しい指標を作ってそれを見る などをすることが多いのではないだろうか。 Adobe …

続きを読む →

RとExcel(ファイルの読み書き、データフレームをExcelで編集)

RでExcelファイル(.xlsx)を読み書きするライブラリはいくつかあるが、openxlsxが多機能でかつ使いやすい。Javaも不要なのでインストールや動作も軽い。古いファイル(.xls)には非対応だが、現行のファイル(.xlsx)のみ対応でよければこれがおすすめ。 Excelファイルの読み込み read.xlsx()関数を使う。 たとえばファイルC:/Users/fukuyama/Documents/master.xlsxのシート「ユーザ」を読み込む場合 m_user.df <- read.xlsx(‘C:/Users/fukuyama/Documents/master.xlsx’,…

続きを読む →

Rでデータセットの抽出(行の抽出、並べ替え、サンプリング、分割)

前のページではデータフレーム、data.tableの列(変数)の処理について解説したが、今度は行の抽出、並べ替え、サンプリング、分割といった行の処理についてまとめる。 行の削除(抽出) データフレーム adlog <- adlog[adlog$imp>1000 & adlog$click<10, , drop=F] adlog <- with(adlog, adlog[imp>1000 & click<10, , drop=F]) 上下は同じ。with()関数はバッチの中でも使えるので便利。 データフレームの抽出・絞り込みでは第3添字にdro…

続きを読む →